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This paper proposes a novel nonlinear control scheme based on energy-shaping (ES) principle and state error port-controlled
Hamiltonian (PCH) systems for unmanned surface vehicles (USV) system. The PCH model of three degrees of freedom for USV
kinetics system is established. By the ES principle, interconnection assignment and damping injection method is applied to the
speed and heading control of the closed-loop USV system to realize an overall stability of control mechanism. Simulation results
show that the validity and stability of control algorithm can be satisfied with the performance in speed and heading tracking of
which the high simplification and portability make it applicable to the various region.

1. Introduction

Unmanned Surface Vehicle (USV) is operated on the surface
of the water without crew operation. The first appearance of
USV can be traced back to World War II, in which they were
developed for the purpose of military use. With the develop-
ment of correlative technique, USV becomes widespread in
areas both military and civilian such as Mine Countermea-
sures, Environmental Monitoring, Maritime Security, Anti-
Submarine Warfare, Electronic Warfare, Surface Warfare,
Special Operation Forces, and Maritime Interdiction Oper-
ation. USV has been widely used for special missions. Now,
with the innovation in electric propulsion technology, the
small high speed unmanned systems will have wide applica-
tions. The motion control problem of USV is attracting more
and more attention from scholars all over the world [1].

The dynamic performance characteristics of USV have an
important part in the development of the automatic system
for motion control. It is still a problem in the field of both
control theory and robotics to have high quality motion
control for USV systems. And a group of international and
domestic academics have devoted much of their research
on the nonlinear control of such vehicles. According to

the related literature, various designed controller approaches
have been proposed like sliding mode control, adaptive
control, backstepping control, cascaded control theory, fuzzy
logic control, and so on. As discussed by Liu et al. [2]
comprehensive reviews present recent progress of the control
approaches from the points of applications, methodologies,
and challenges. As to the adaptive control, an active mecha-
nism for unmanned vehicles, Klinger et al. [3] implemented
an adaptive algorithm with the modified backstepping surge
controller which has been field tested. Sonnenburg [4] and
Sonnenburg and Woolsey [5] direct a speed controller algo-
rithm by backstepping and Lyapunov’s direct method, which
also has been tested by USV. Dong et al. [6] present a state
feedback based backstepping control algorithm to address the
speed and trajectory tracking problem. Sean Kragelund et al.
[7] proposed three different adaptive speed controllers and
a model reference adaptive controller of a floating turbine.
The major solutions of trajectory tracking problem are the
method of feedback linearization, backstepping approach,
Lyapunov’s direct method, cascade system method, robust
control, sliding mode control, and so on. Some scholars used
the backstepping approach and Lyapunov’s direct method to
resolve the trajectory tracking problem of the USV system
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[8, 9]; the result showed that the controller can still force the
trajectory. In paper [10], a sliding mode trajectory tracking
controller was developed, and the result showed that the USV
could track circular and straight line trajectory. Kahveci and
Ioannou [11] proposed an adaptive law which is combined
with a control design including a Linear Quadratic (LQ)
controller to resolve the steering control for uncertain ship
dynamic. However, the nonlinear control methods men-
tioned above are still not implemented because the process of
control is too complex, and there is still not a comprehensive
and practical control law which can be robust in vessel
dynamics.

Recently, some scholars pay more attention to the port-
controlled Hamiltonian (PCH) theory and interconnection
and damping assignment (IDA–PBC) method [12–15], and
in the design of nonlinear control systems field the inter-
connection and damping assignment approach has gradu-
ally become a significant method. In this paper, our main
objective is to develop a new speed and heading angle
controller of USV which combined interconnection and
damping assignment method and state error approach. The
organization of this paper is as follows: mathematical PCH
kineticsmodel of theUSV is presented in Section 2, a detailed
design of the controller is in Section 3, Section 4 analyzes
the stability of the controller, and the simulation results are
shown in Section 5.

2. PCH Model of Unmanned Surface Vehicles

2.1. The Model of USV. The structure of USV is shown in
Figure 1. The propulsion system of USV is consisted of two
propellers derived by two electric-powered motors. By the
force and steering torque control, USV can keep moving
in the condition of surge, sway, and yaw. Because, in this
structure of three appreciable degrees of freedom, only two
degrees can be actuated, USV under this structure is under-
actuated. In this context, dynamic model of USV has been
extensively studied. In order to better facilitate the modeling
design, USV is assumed to be moved in ideal fluid, and the
mass is uniformly distributed. When building the reference
frame, an origin of USV body coordinates coincides with the
center of gravity, and both the center of gravity and buoyancy
are perpendicular to the 𝑍-axis. In physical design, USV is
set to be port-starboard symmetrical; hence surge subsystem
and sway-yaw subsystem are essentially decoupled [2].

From a physical standpoint, we should consider the
impact of the nonlinear hydrodynamic damping in kinetics
model to cover the applications fromhigh speed to low speed.
USV is assumed to be moved in ideal fluid, and the mass is
uniformly distributed, so the uncertainties and disturbances
are linear with velocity or slowly varying relative to the
USV dynamics. Based on all of these above assumptions, the
kinetics model [3, 16–21] of USV can be obtained as

𝑚11�̇� − 𝑚22V𝑟 + 𝑑11𝑢 = 𝑓𝑝,𝑚22V̇ + 𝑚11𝑢𝑟 + 𝑑22V = 0,𝑚33 ̇𝑟 + (𝑚22 − 𝑚11) 𝑢V + 𝑑33𝑟 = 𝑇𝑠.
(1)
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Figure 1: The motion coordinate system for USV.

The Kinematics model of heading subsystem of USV can be
obtained as

�̇� = 𝑟, (2)

where 𝑢 is surge velocity, V is sway velocity, and 𝑟 is yaw rate in
body fixed reference frame.𝑚𝑖𝑖 are inertia coefficients of USV
including mass effects added, 𝑑𝑖𝑖 are hydrodynamic damping
coefficients in conditions of surge, sway, and yaw, 𝑓𝑝 are the
forces of propulsion system, and 𝑇𝑠 is the steering torque. 𝜓
denotes orientation angle of the vessel.

Then (1) can be expressed in matrix form:

𝑀 ̇𝜐 + 𝐶 (𝜐) 𝜐 + 𝐷𝜐 = 𝑢𝑠. (3)

Here 𝜐 = [𝑢, V, 𝑟]𝑇, 𝑢𝑠 = [𝑓𝑝, 0, 𝑇𝑠]𝑇, 𝑀 =
diag{𝑚11, 𝑚22, 𝑚33} 𝐶(𝜐) = [ 0 0 −𝑚22V

0 0 𝑚11𝑢
𝑚22V −𝑚11𝑢 0

], and𝐷 = diag{𝑑11, 𝑑22, 𝑑33}.
M is an inertia parameters matrix including the added

body mass, 𝐶(𝜐) is the so-called Coriolis and centripetal
matrix, and𝐷 is hydrodynamic damping matrix.

The thrust forces 𝑓𝑝 and steering torque 𝑇𝑠 are functions
of the two surge control thrust forces which are from each
propeller:

𝑓𝑝 = 𝑓1 + 𝑓2,
𝑇𝑠 = 𝐵 (𝑓1 − 𝑓2)2 , (4)

where 𝑓1 is the thrust force which is produced by the first
motor and 𝑓2 is the thrust force which is produced by the
second motor. 𝐵 is the distance between the propellers. From
(4), the thrust allocated to each propeller, 𝑓1 and 𝑓2, can be
calculated as

𝑓1 = 𝑓𝑝2 + 𝑇𝑠𝐵 ,
𝑓2 = 𝑓𝑝2 − 𝑇𝑠𝐵 .

(5)
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2.2. PCH Systems. The general form for a nonlinear dynami-
cal system can be shown as follows:

�̇� = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢𝑠,𝑦 = ℎ (𝑥) , (6)

where 𝑥 ∈ R𝑛 is the state vector, 𝑦 ∈ R𝑚 is the output vector,
and 𝑢𝑠 ∈ R𝑚 is the input vector. From [13, 14] we can see
that if there is possible way to find a nonnegative function𝑉(𝑥) (𝑉(0) = 0) such that

𝑉 (𝑥 (𝑡)) − 𝑉 (𝑥 (0)) ≤ ∫𝑡
0
𝑦𝑇 (𝜏) 𝑢𝑠 (𝜏) 𝑑𝜏 (7)

the system described by (6) is passive. Then, the PCH system
with dissipation can be described as follows [14]:

�̇� = [𝐽 (𝑥) − 𝐷 (𝑥)] 𝜕𝐻 (𝑥)𝜕𝑥 + 𝑔 (𝑥) 𝑢𝑠,
𝑦 = 𝑔𝑇 (𝑥) 𝜕𝐻 (𝑥)𝜕𝑥 , (8)

where 𝐷(𝑥) is positive semidefinite symmetric matrix and𝐷(𝑥) = 𝐷𝑇(𝑥) ≥ 0. It represents the dissipation of the system.
The interconnection structure of the system is represented by
the skew-symmetric matrix 𝐽(𝑥) = −𝐽𝑇(𝑥) and matrix 𝑔(𝑥).𝐻(𝑥) is the Hamiltonian function which defines the stored
energy function of the system.

The variation of internal energy of the dynamical system
(8) equals the power which was provided with the system by
the environment plus the dissipated power. The PCH system
(8) model’s energy balance equation is as follows:

𝑑𝐻 (𝑥)𝑑𝑡 = [𝜕𝐻 (𝑥)𝜕𝑥 ]𝑇 �̇�
= 𝑦𝑇𝑢𝑠 − [𝜕𝐻 (𝑥)𝜕𝑥 ]𝑇𝐷 (𝑥) [𝜕𝐻 (𝑥)𝜕𝑥 ]
≤ 𝑦𝑇𝑢𝑠.

(9)

In time-interval [0, 𝑡], (9) establishes the passivity properties
of the PCH system. which is the same as (7):

𝐻(𝑥 (𝑡)) − 𝐻 (𝑥 (0)) ≤ ∫𝑡
0
𝑦𝑇 (𝜏) 𝑢𝑠 (𝜏) 𝑑𝜏. (10)

2.3. PCH Model of USV Kinetics System. From the system
described by (3) and (6), the state vector and the input vector
of the system are defined as follows:

𝑥 = [[[
𝑥1𝑥2𝑥3
]]] =

[[[
𝑚11𝑢𝑚22V𝑚33𝑟

]]] ,

𝑢𝑠 = [[[
𝑢1𝑢2𝑢3
]]] =

[[[
𝑓𝑝0𝑇𝑠
]]] .

(11)

TheHamiltonian function of theUSV dynamic system can be
defined as

𝐻(𝑥) = 12𝑥𝑇𝑀−1𝑥 = 12 (𝑚11𝑢2 + 𝑚22V2 + 𝑚33𝑟2) . (12)

Combine (3), (8), and (12); then the PCH model of USV
dynamic system can be obtained as follows:

�̇� = [[[(
0 0 𝑚22V0 0 −𝑚11𝑢−𝑚22V 𝑚11𝑢 0 )

−(𝑑11 0 00 𝑑22 00 0 𝑑33)
]]]
𝜕𝐻𝜕𝑥 +(

1 0 00 1 00 0 1)𝑢𝑠,
(13)

where

𝐽 (𝑥) = [[[
0 0 𝑚22V0 0 −𝑚11𝑢−𝑚22V 𝑚11𝑢 0

]]] ,

𝐷 (𝑥) = [[[
𝑑11 0 00 𝑑22 00 0 𝑑33

]]] ,

𝑔 (𝑥) = [[[
1 0 00 1 00 0 1

]]] ,

(14)

𝜕𝐻𝜕𝑥 = 𝑀−1𝑥 = [[[
𝑢
V𝑟
]]] . (15)

3. The Controller Design of
Speed and Heading

In the design of energy controller, energy optimizing is
realized by port-controlled Hamiltonian model. As to the
PCH system described by (8), how to obtain a feedback
defined by (17) that can keep the closed-loop system stable
is the key point.

Assuming 𝑥∗ is a desired equilibrium, then the state error
will be 𝑥 = 𝑥 − 𝑥∗. The final objective of IDA–PBC [12] is to
find 𝛽(𝑥), 𝐽𝑎,𝐷𝑎 matching the condition

𝐽𝑑 (𝑥) = 𝐽 (𝑥) + 𝐽𝑎 = −𝐽𝑇𝑑 (𝑥) ,𝐷𝑑 (𝑥) = 𝐷 (𝑥) + 𝐷𝑎 = 𝐷𝑇𝑑 (𝑥) ≥ 0, (16)

𝑢𝑠 = 𝛽 (𝑥) . (17)

Then the closed-loop system (8) follows a state error PCH
form: ̇̃𝑥 = [𝐽𝑑 (𝑥) − 𝐷𝑑 (𝑥)] 𝜕𝐻𝑑𝜕𝑥 . (18)
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The desired Hamilton function is chosen as

𝐻𝑑 (𝑥) = 12 [𝑚11 (𝑢 − 𝑢∗)2 + 𝑚22V2 + 𝑚33𝑟2] . (19)

Then we choose

𝐽𝑎 = [[[
0 −𝐽12 𝐽13𝐽12 0 𝐽23−𝐽13 −𝐽23 0

]]] ,

𝐷𝑎 = [[[
𝑑𝑎1 0 00 𝑑𝑎2 00 0 𝑑𝑎3

]]] ,
(20)

where 𝐽12, 𝐽13, 𝐽23, and 𝑑𝑎1, 𝑑𝑎2, 𝑑𝑎3 are the designed
parameters.

Consider the closed-loop system (18) with feedback
control by (17); substituting 𝑥 = 𝑥 + 𝑥∗ into PCH system (8),
we get ̇̃𝑥 = [𝐽 (𝑥 + 𝑥∗) − 𝐷]𝑀−1 (𝑥 + 𝑥∗)+ 𝑔 (𝑥 + 𝑥∗) 𝛽 (𝑥) − �̇�∗. (21)

In USV PCH structure model, we could get the hydrody-
namic damping matrix as constant matrix. So we used the
symbol𝐷 to represent the symbol𝐷(𝑥).

From the PCH system (8), we can derive

�̇�∗ = [𝐽 (𝑥∗) − 𝐷]𝑀−1𝑥∗ + 𝑔 (𝑥∗) 𝑢𝑠∗, (22)

where 𝑢𝑠∗ is the input vector which corresponds to coming to
the equilibrium point in (1).

If the condition (23) can be set up,𝐽 (𝑥 + 𝑥∗) = 𝐽 (𝑥) + 𝐽 (𝑥∗) , (23)

then substitute formulas (22) and (23) into (21); the state error
model can be obtained bẏ̃𝑥 = [𝐽 (𝑥) − 𝐷]𝑀−1𝑥 + 𝐽 (𝑥∗)𝑀−1𝑥 + 𝐽 (𝑥)𝑀−1𝑥∗+ 𝑔 (𝑥 + 𝑥∗) 𝛽 (𝑥) − 𝑔 (𝑥∗) 𝑢𝑠∗. (24)

According to (16) and (17), the above formula can be written
as (18), so the feedback control can be obtained by

𝑔 (𝑥) 𝛽 (𝑥) = [𝐽𝑎 − 𝐷𝑎 − 𝐽 (𝑥∗)]𝑀−1𝑥 − 𝐽 (𝑥)𝑀−1𝑥∗+ 𝑔 (𝑥∗) 𝑢𝑠∗. (25)

We define 𝑢∗ and 𝜓∗, respectively, referring to the desired
surge speed and yaw angle; then the state [𝑢, V, 𝑟, 𝜓]𝑇 is glob-
ally uniformly asymptotically convergent to [𝑢∗, 0, 0, 𝜓∗]𝑇
[22]. So the equilibrium point of 𝑥∗ will be [𝑚11𝑢∗, 0, 0]𝑇.
When the system is coming to the equilibrium point, from
(1) we can obtain

𝑢𝑠∗ = [[[
𝑑11𝑢∗00 ]]] . (26)

Substituting (16), (20), and (26) into the above formula (25),
the energy controller becomes

𝑓𝑝 = 𝐽13𝑟 − 𝐽12V − 𝑑𝑎1 (𝑢 − 𝑢∗) + 𝑑11𝑢∗,0 = 𝐽12 (𝑢 − 𝑢∗) + 𝐽23𝑟 − 𝑑𝑎2V + 𝑚11𝑢∗𝑟,𝑇𝑠1 = 𝑢∗𝑚22V − (𝐽23 + 𝑚11𝑢∗) V − 𝐽13 (𝑢 − 𝑢∗)− 𝑑𝑎3𝑟.
(27)

Let 𝐽13 = 𝑚22V, 𝐽23 = −𝑚11𝑢, and 𝐽12 = 𝑚33𝑟; then the energy
controller further becomes𝑓𝑝 = (𝑚22 − 𝑚33) V𝑟 − 𝑑𝑎1 (𝑢 − 𝑢∗) + 𝑑11𝑢∗,0 = (𝑚33 − 𝑚11) (𝑢 − 𝑢∗) 𝑟 − 𝑑𝑎2V,𝑇𝑠 = (𝑚11 − 𝑚22) (𝑢 − 𝑢∗) V + 𝑚22V𝑢∗ − 𝑑𝑎3𝑟.

(28)

As to the controller development of heading, the state error
method is taken as the feedback control law for the yaw
subsystem. The yaw subsystem of motion is given by (1) and
(2) can be rewritten as𝑚33 ̇𝑟 + (𝑚22 − 𝑚11) 𝑢V + 𝑑33𝑟 = 𝑇𝑠,�̇� = 𝑟. (29)

Which is typical of cascade control system. If the heading
tracking error is defined as𝑒𝜓 = (𝜓 − 𝜓∗) , (30)

where 𝜓∗ is the desired heading angle, and the selected
linearization control is in the form of �̇� = �̇�∗ − 𝑘𝜓𝑒𝜓, then
the heading tracking error dynamics will bė𝑒𝜓 + 𝑘𝜓𝑒𝜓 = 0. (31)

When the values of the surge velocity gain 𝑘𝜓 are positive,
the error dynamics for 𝑒𝜓 would remain stable. The error
dynamics controller will be 𝑇𝑠2 = −𝑘𝜓𝑒𝜓. Combining the
equation mentioned before with the third formula of (28),
then the heading controller is𝑇𝑠 = 𝑇𝑠1 + 𝑇𝑠2= (𝑚11 − 𝑚22) (𝑢 − 𝑢∗) V + 𝑚22V𝑢∗ − 𝑑𝑎3𝑟 − 𝑘𝜓𝑒𝜓. (32)

It is obvious that the surge velocity always couples with yaw
rate, as a result of which it is impossible to control either one
of them independently. Checking the sway velocity subsystem
which is the second formula of (1),𝑚22V̇ + 𝑚11𝑢𝑟 + 𝑑22V = 0. (33)

By using the control law of heading angle and surge speed, we
can see that the sway subsystem in (33) reduces to𝑚22V̇ = −𝑚11𝑢∗�̇�∗ − 𝑑22V. (34)

When the time 𝑡 → ∞, finally the sway velocity always has
V→ 0. That means the sway velocity V is exponentially stable
for the case of �̇�∗ = 0.
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From all the above analysis of the controller, the com-
bined surge speed and heading controller are taken as

𝑓𝑝 = (𝑚22 − 𝑚33) V𝑟 − 𝑑𝑎1 (𝑢 − 𝑢∗) + 𝑑11𝑢∗,𝑇𝑠 = (𝑚11 − 𝑚22) (𝑢 − 𝑢∗) V + 𝑚22V𝑢∗ − 𝑑𝑎3𝑟− 𝑘𝜓𝑒𝜓.
(35)

4. The Stability of the Controller

We will analyze the stability of the energy controller in this
section. Liao et al. [22] pointed that the combined surge speed
and heading control laws make the state [𝑢, V, 𝑟, 𝜓]𝑇 globally
uniformly asymptotically convergent to [𝑢∗, 0, 0, 𝜓∗]𝑇 and
bounded. Here we consider the Lyapunov function of the
close-loop system defined as

𝑉𝑒 = 𝐻𝑑 (𝑥) + 12𝑘𝜓𝑒2𝜓. (36)

We can compute the time derivative of𝑉𝑒 with respect to time
along the solutions of the close-loop system

�̇�𝑒 = 𝑑𝐻𝑑 (𝑥)𝑑𝑡 + 𝑘𝜓𝑒𝜓 ̇𝑒𝜓 = [𝜕𝐻𝑑 (𝑥)𝜕𝑥 ]𝑇 ̇̃𝑥 − 𝑘𝜓2𝑒𝜓2
= [𝜕𝐻𝑑 (𝑥)𝜕𝑥 ]𝑇 [𝐽𝑑 (𝑥) − 𝐷𝑑 (𝑥)] 𝜕𝐻𝑑𝜕𝑥 − 𝑘𝜓2𝑒𝜓2.

(37)

As 𝐽𝑑(𝑥) is the skew-symmetric matrix, we can obtain

[𝜕𝐻𝑑 (𝑥)𝜕𝑥 ]𝑇 𝐽𝑑 (𝑥) 𝜕𝐻𝑑𝜕𝑥 = 0. (38)

According to 𝐷𝑑(𝑥) being positive semidefinite symmetric
matrix, hence

−[𝜕𝐻𝑑 (𝑥)𝜕𝑥 ]𝑇𝐷𝑑 (𝑥) 𝜕𝐻𝑑𝜕𝑥 ≤ 0. (39)

Obviously, we can get𝑉𝑒 is positive definite and �̇�𝑒 is negative
semidefinite. By using the Lyapunov stability theory, the
closed-loop system establishes stability. So [𝑢∗, 0, 0, 𝜓∗]𝑇 is
taken as the equilibrium of the closed-loop system. Addition-
ally, if the largest invariant set of system equals {0}, the system
is asymptotically stable.

From (14), we can get that the structures of the matri-
ces 𝐽(𝑥) and 𝐷(𝑥) are maintained if the parameters are
with uncertain displacement and drag. 𝐽(𝑥) is also positive
semidefinite symmetric matrix, and 𝐽(𝑥) = −𝐽𝑇(𝑥). 𝐷(𝑥)
is also positive semidefinite symmetric matrix, and 𝐷(𝑥) =𝐷𝑇(𝑥) ≥ 0. Because the interconnection and damping
structures of the system remain unchanged, the stability of
the system is also asymptotically stable.

5. System Simulation

The numerical simulation is performed by MATLAB/
Simulink. USV for modeling has a length of 1.2m and a mass

of 17.5 kg, and two DC motors were equipped for providing
surge force and yaw moment by driving two propellers. The
ship model’s parameters are calculated [23]:

𝑚11 = 25.8 kg,𝑚22 = 33.8 kg,𝑚33 = 2.76 kg⋅m2,𝑟11 = 12 kg/s,𝑟22 = 17 kg/s,𝑟33 = 0.5 kg⋅m2/s.

(40)

From the stability analysis of the controller, the parameters
should be 𝑑𝑎1, 𝑑𝑎3 ≥ 0, 𝑘𝜓 ≥ 0. And the controller parameters
can be ranged through the spectrum. Figure 2 gives the surge
speed responses of different damping parameters (𝑑𝑎1 = 100,𝑑𝑎1 = 2000, and 𝑑𝑎1 = 4000). From Figure 2, we can know
that the surge speed response has better performance when𝑑𝑎1 = 2000. Figure 3 gives the heading angle responses of
different parameters (𝑑𝑎3 = 100, 𝑘𝜓 = 500, 𝑑𝑎3 = 500,𝑘𝜓 = 2000, 𝑑𝑎3 = 1000, and 𝑘𝜓 = 3000). We can know
that the heading angle response has better performance when𝑑𝑎3 = 500, 𝑘𝜓 = 2000. So the design parameters are chosen
as 𝑑𝑎1 = 2000, 𝑑𝑎3 = 500, and 𝑘𝜓 = 2000. The desired speed
and heading references are [𝑢∗, 0, 0, 𝜓∗]𝑇 = [1, 0, 0, 0.5]𝑇. At
the moment of 𝑡 = 10 s, load disturbances Δ𝜉𝑓𝑝 = 10N
and Δ𝜉𝑇𝑠 = 10Nm are added separately to the system,
and duration of the disturbances added to the system is 1 s.
Dynamic response and disturbance attenuation of the control
system are, respectively, shown in Figures 4 and 5, fromwhich
the satisfactory results are obtained bymethodsmentioned in
Section 3. At the moment of 𝑡 = 10 s, the desired surge speed
and heading angle are set to [𝑢∗, 0, 0, 𝜓∗]𝑇 = [1.3, 0, 0, 1]𝑇,
respectively. Figures 6 and 7 are shown where the proposed
control approach has extremely quick tracking performance.

Figure 8 shows that the state [𝑢, V, 𝑟, 𝜓]𝑇 is globally
uniformly asymptotically convergent to [𝑢∗, 0, 0, 𝜓∗]𝑇. When
the system is coming to the equilibrium point, the sway
velocity V and the yaw rate 𝑟 always tend to Zero.

We use the classical PID speed and heading controller
which is shown in Figure 9 to compare with the proposed
control approach. Figure 10 gives the surge speed responses of
different parameters (𝑘𝑝 = 500, 𝑘𝑖 = 10, 𝑘𝑑 = 100; 𝑘𝑝 = 1000,𝑘𝑖 = 10, 𝑘𝑑 = 100; 𝑘𝑝 = 5000, 𝑘𝑖 = 10, and 𝑘𝑑 = 100). We can
know that the surge speed response has better performance
when 𝑘𝑝 = 5000, 𝑘𝑖 = 10, and 𝑘𝑑 = 100. Figure 11 gives
heading angle responses of different parameters (𝑘𝑝 = 200,𝑘𝑖 = 0, 𝑘𝑑 = 100; 𝑘𝑝 = 1000, 𝑘𝑖 = 0, 𝑘𝑑 = 300; 𝑘𝑝 = 2000,𝑘𝑖 = 0, and 𝑘𝑑 = 500). We can know that the heading
angle response has better performance when 𝑘𝑝 = 2000,𝑘𝑖 = 0, and 𝑘𝑑 = 500. Figures 12 and 13 are shown where
the proposed control approach has tracking performance
similar to the classical PID approach. Figures 14 and 15 show
the surge speed and heading angle responses when the load
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Figure 2: Surge speed curves with different parameters.
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Figure 3: Heading angle curves with different parameters.

disturbances Δ𝜉𝑓𝑝 = 10N and Δ𝜉𝑇𝑠 = 10Nm are added
separately to the different controllers at 𝑡 = 10 s. FromFigures
14 and 15, we can see that the state error PCH controller
has load disturbances attenuation performance similar to the
classical PID controller.

The above simulation results show that the proposed
control approach has good performance in dynamic and
steady state. From the simulation results shown above, the
proposed control method could to some extent achieve a
better performance for the signal tracking of the given speed
and heading angle.
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Figure 4: Surge speed curve of USV.
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Figure 5: Heading angle curve of USV.
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Figure 6: Surge speed tracking curve.
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Figure 7: Heading angle tracking curve.
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proposed controller.
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6. Conclusions

In this article, the state error port-controlled Hamiltonian
theory has been discussed. A novel controller based on state
error port-controlled Hamiltonian approach is proposed in
this paper for speed and heading angle tracking control of
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Figure 10: Surge speed curves with different parameters (classical
PID controller).
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Figure 11: Heading angle curves with different parameters (classical
PID controller).

underactuated USV. The desired state error port-controlled
Hamiltonian structure is assigned to the closed-loop USV
system which based on interconnection assignment and
damping injection method. To realize the overall stability
of the control, Lyapunov theory and La Salle’s invariance
principle are introduced to improve the clearance of physical
meanings. Simulation results confirm the validity and sta-
bility of control algorithm. Compared with the classical PID
controller, the designed controller has similar tracking and
load disturbances attenuation performances. The designed
controller has good steady state performance and simple
structure. And the proposed controller provides an effective



www.manaraa.com

8 Mathematical Problems in Engineering

Time (s)
0 5 10 15 20

0

0.5

1

1.5

1.8 2 2.2
0.99

0.995
1

12.8 13 13.2
1.49

1.495
1.5

Su
rg

e s
pe

ed
u

(m
/s

)

pch
pid

Figure 12: Surge Speed tracking curves when using different
controllers.
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Figure 13: Heading angle tracking curves when using different
controllers.

approach to analyze stability of the closed-loop system. The
high simplification and portability of the controller make it a
candidate choice for vast application in various region.
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